SUBSPACE MODELS




Credits

Some of these slides were sourced and/or modified
from Simon Prince, University College London
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Subspace Models

Natural images have high dimensionality D
e.g., for an 1800 x 1200 colour image, D=6.5 million.

There is typically insufficient training data to learn a
probabilistic model in such a high-dimensional space.

Fortunately, natural images actually live in a much

smaller subspace, or manifold, of this high-

dimensional space. u
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Subspace Models
-] . SbsaceModes
-1 For example, you will have to wait a long time
before a sample of white noise looks like a natural
image.
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Subspace Models

e.g., standard transformations (e.g., translations,

rotations, scalings) of objects produce images

populating a low-dimensional manifold embedded

in this high-dimensional space
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Subspace Models

The goal of subspace methods is to discover the
low-dimensional subspace in which the data lie and

exploit the lower-dimensionality to allow efficient
and detailed modeling.
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Subspace Models

We will mainly consider linear subspaces
A line if D=2
A line or a plane if D=3
A hyperplane of dimensionality [1,...,D-1] for higher D

But we will also consider some methods to deal with
nonlinear manifolds.
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PRINCIPAL COMPONENT
ANALYSIS




Principal Component Analysis

PCA finds the linear subspace that
maximizes the explained variance
equivalently, minimizes the unexplained variance
PCA can be applied to any multidimensional dataset
(data do not have to be Gaussian)
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Maximum Variance Formulation

Observations {xn},n =1...N

Observation x_ is a high-dimensional vector of dimension D

N N
Let x = %ZXn be the sample mean and S = lZ(xn — i)(xn — )_()t be the sample covariance
i=1 i=1

Goal: Project the data onto subspace of dimension M < D

Consider a direction in the data space given by unit vector u,.

Now imagine projecting all of the data onto this unit vector. " - /
The mean of the projected data is u;x. / -
>
N
The variance of the projected data is 1Z(u:xn — u:)_()2 =u;Su,

i=1 T v
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Maximum Variance Formulation

We want to select the unit vector u, that maximizes the projected variance u:Su1
To do this, we use a Lagrange multiplier A, to maintain the constraint that u, be a unit vector.
Thus we seek to maximize u;Su, + 1, (1 - u§u1)

Setting the derivative with respect to u, to 0, we have Su, = Au,

T2

Thus u, is an eigenvector of S.

Left-multiplying by u}, we see that the projected variance u;Su, = 1..
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Dimensionality Reduction

The next direction v, can be chosen by maximizing projected
variance in the D-1dimensional subspace orthogonal to v,.

Typically, most of the variance is captured in a relatively small
linear subspace.
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Computational Cost

Computing full eigenvector decomposition is O(D3).

If we only need the first M eigenvectors, the cost is
O(MD?).

However, this could still be very expensive if D is
large

e.g., Foran 1800 x 1600 image and M =100, O(650 million)
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Computational Cost

But the number of training images N is usually much smaller than D, and this
leads to a trick:

Let X be the N x D centred data matrix whose nth row is given by (xn - )_()t.

Then the sample covariance matrix is S = lX‘X.
DxD

. R L.
and the eigenvector equation is NX‘Xui =Au.

Pre-multiplying both sides by X yields %XXt (Xui) =2 (Xu )

Now letting v, = Xu,, we have

NxN
10 ot
t _ o
NXX V= AV, € Much smaller eigenvector problem!
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Computational Cost

o To find the eigenvectors of S, we premultiply by X*

S
1y o i t
—XX'v, = Av. —{—x x)(x v,)=4(X'v,)
N N

and, normalized to unit length, the eigenvectors are u, = LX‘v.

JNA,

Note that these N eigenvectors live in the N-dimensional subspace
spanned by the training images.
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- Applications of PCA




Pre-Whitening
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and unit variance (z-scores)
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Compression
n Subspace Models

Original M=1 M =10 M =50 M =250
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Modeling

X+ou, ——— < X +1‘£5”1 -

m ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perception J. Elder



PROBABILISTIC PCA




Probabilistic PCA

PCA applies to data of any kind.

But PCA can also be interpreted as the maximum likelihood
solution to a probabilistic latent variable model based on a
constrained form of the Gaussian distribution:

Let z be an M-dimensional hidden variable with Gaussian prior
Let x be the D-dimensional observed variable with Gaussian conditional:

p(z)=N(z|0,l)
p(x|z)=N(x|Wz+ o)

!

DxM
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Probabilistic PCA

1 One way to see this is to think of Probabilistic PCA as the limit
of a mixture of Gaussians model, as the number of Gaussian
components > ©:
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Probabilistic PCA

Consider putting the means of the Gaussians mixture components all on a
line and forcing their diagonal covariances to be identical.

What happens if we keep adding more and more Gaussians along this
line?
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Probalistic PCA
20

Consider putting the means of the Gaussians mixture components all on a
line and forcing their diagonal covariances to be identical.

What happens if we keep adding more and more Gaussians along this
line¢ In the limit the hidden variable become continuous
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Probabilistic PCA

Consider putting the means of the Gaussians mixture components all on a
line and forcing their diagonal covariances to be identical.

What happens if we keep adding more and more Gaussians along this
line¢ In the limit the hidden variable become continuous
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Probabilistic PCA

Consider putting the means of the Gaussians mixture components all on a
line and forcing their diagonal covariances to be identical.

What happens if we keep adding more and more Gaussians along this
line¢ In the limit the hidden variable become continuous
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Probabilistic PCA

PCA as the maximum likelihood solution to a probabilistic
latent variable model based on a constrained form of the
Gaussian distribution:

Let z be an M-dimensional hidden variable with Gaussian prior

Let x be the D-dimensional observed variable with Gaussian conditional:
p(z)=N(z|0,I)

p(x|z)=N(x|Wz+ o)

!

DxM
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Generative Model

\ | x=Wztute p(z)=N(z|0,I)

p(x|z)=NXx|Wz+ u,o)

> > >
Z I I

Prior over latent variable Subspace Marginal density
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Marginal Distribution for Probabilistic PCA

-1 The marginal distribution of the observed variable is

p(x)=N(x|u,C)
where
C=WW'+c
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Maximum Likelihood PCA

=X

2 1T <
o2 =—— Y A
- D—M,-:%iﬂ

1/2

w, =U,(L,-c%) R

where

U, is a D x M matrix whose columns are given by any subset of size M of the eigenvectors of S
L, is an M x M diagonal matrix containing the M corresponding eigenvalues A,

R is an arbitrary rotation matrix

ML parameters can be found either by
determining M eigenvectors and eigenvalues directly

EM x=Wz+u+e¢
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FACTOR ANALYSIS




Generative Model

b 4 o X:WZ+‘u+g—> p(Z)=N(Z|O,|)
. p(X|2) = N(x | Wz + 11,'¥)

Y = Covariance of € : diagonal but not isotropic

W,
) )

Ho— W

> >
L1 L1

Prior over latent variable Subspace Marginal density
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Factor Analysis Terminology

1 Columns of W are called factor loadings

o Diagonal elements of ¥ are called uniquenesses

‘P\ | x=Wz+u+e¢
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Marginal Distribution for Factor Analysis

-1 The marginal distribution of the observed variable is

p(x)=N(x| u,C)
where
C=WW'+¥
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Maximum Likelihood Parameter Estimation
| 35 |

My =X

However, no closed-form solution for WML. Instead, can use EM to find WML and o
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Learning Results: Two Factor Model
o

X=Wz+u+e whereW=[w, w,..w,]

J
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Learning results: Two Factor Model

X=Wz+ Uu+¢& whereW=

H+2W. H+2wW,
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Non-Linear Extensions

Mixture of factor analyzers (MOFA)
Two levels of the EM algorithm
One to learn each factor analyzer
One to learn the mixture model

Can describe quite complex manifold structures in high
dimensions with only a limited number of parameters

A
K
)= 2 N(x|1,.C
. k=1
e .
2 where
. t
C =WW +¥
| >
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Non-Linear Extensions

1 Kernel PCA

ldea:
= Use a non-linear mapping @ to an M-dimensional ‘feature space’

® Now perform PCA in this new space

Tok
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Kernel PCA

N
Assume 0-mean data vectors: Y x_=0.

n=1

Covariance in feature space C = %iq)(xn)gb(xn)t 1N ){
n=1

Eigenvector expansion Cv, = Av,

Thus the eigenvector v, is a linear combination of the transformed data vectors ¢>(xn):

M=

I 1Y
Substituting, we have szp(xn)(b(x )f

n

aim¢(xm) = ;Liz ain¢(xn)

m=1 n=1

Now multiplying both sides by ¢(x, )t, we obtain
R 2000) 00%) X a,0(x) 6(x,) =2 X a0 (x) o(x,

Finally, defining the kernel function k(xn,xm) = ¢(x )t ¢(xm), we can write

1 N N N
N;k(x,,xn)%aimk(xn,xm) = li;aink(x,,xn)
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Kernel PCA

1 N
Nzk(xl’xn)n%aimk(xn’xm): /’Lizaink(xl’xn)

N-dimensional eigenvector

/

or, in matrix notation, K2a,. =ANKa, — Ka = ANa

1

Requiring that the eigenvectors v, in feature space be unit vectors leads to the constraint ‘ai‘z = NI

In practice, for the projected data to have 0 mean, use K=K -1 K-K1,+1, K1,

where
A
1 1
N N
W= + . N
1 1
N N
= >
N
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Kernel PCA
Ca

Eigernvalue=21.72 Eigenvalue=21.645 Eigenvalue=4.11 Eigenvalue=3.93

Eigenvalue=3.6h Eigenvalue=3.09 Eigenvalug=2 g0 Eigenvalue=2 453
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