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Credits 

  Some of these slides were sourced and/or modified 
from Simon Prince, University College London 
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Subspace Models 

  Natural images have high dimensionality D 
  e.g., for an 1800 x 1200 colour image, D≅6.5 million.  

  There is typically insufficient training data to learn a 
probabilistic model in such a high-dimensional space. 

  Fortunately, natural images actually live in a much 
smaller subspace, or manifold, of this high-
dimensional space. 
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Subspace Models 

  For example, you will have to wait a long time 
before a sample of white noise looks like a natural 
image. 
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Subspace Models 

  e.g., standard transformations (e.g., translations, 
rotations, scalings) of objects produce images 
populating a low-dimensional manifold embedded 
in this high-dimensional space 
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Subspace Models 

  The goal of subspace methods is to discover the 
low-dimensional subspace in which the data lie and 
exploit the lower-dimensionality to allow efficient 
and detailed modeling. 
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Subspace Models 

  We will mainly consider linear subspaces 
 A line if D=2 
 A line or a plane if D=3 
 A hyperplane of dimensionality [1,...,D-1] for higher D 

  But we will also consider some methods to deal with 
nonlinear manifolds. 
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Principal Component Analysis 

  PCA finds the linear subspace that 
 maximizes the explained variance 
 equivalently, minimizes the unexplained variance 

  PCA can be applied to any multidimensional dataset 
  (data do not have to be Gaussian) 
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Maximum Variance Formulation 

    Observations xn{ },n = 1,…N

   Observation xn  is a high-dimensional vector of dimension D

  Goal:  Project the data onto subspace of dimension M  <  D

  Consider a direction in the data space given by unit vector u1.

x2

x1

xn

�xn

u1

  The mean of the projected data is u1
tx.

 Now imagine projecting all of the data onto this unit vector.

   
Let x =

1
N

xn
i=1

N

∑  be the sample mean and S =
1
N

xn − x( ) xn − x( )t
i=1

N

∑  be the sample covariance

   
The variance of the projected data is 1

N
u1

txn −u1
tx( )2

i=1

N

∑ = u1
tSu1
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Maximum Variance Formulation 

x2

x1

xn

�xn

u1

  We want to select the unit vector u1 that maximizes the projected variance u1
tSu1

  To do this, we use  a Lagrange multiplier λ1 to maintain the constraint that u1 be a unit vector.

  Thus we seek to maximize u1
tSu1 + λ1 1−u1

tu1( )

   Setting the derivative with respect to u1 to 0, we have Su1 = λ1u1

  Thus u1 is an eigenvector of S.

  Left-multiplying by u1
t,  we see that the projected variance u1

tSu1 = λ1.

 λ1

 λ1
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Dimensionality Reduction 

  The next direction u2 can be chosen by maximizing projected 
variance in the D-1dimensional subspace orthogonal to u1. 

  Typically, most of the variance is captured in a relatively small 
linear subspace. 
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Computational Cost 

  Computing full eigenvector decomposition is O(D3). 
  If we only need the first M eigenvectors, the cost is 

O(MD2). 
  However, this could still be very expensive if D is 

large 

  e.g.,  For an 1800 ×1600 image and M = 100, O(650 million)
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Computational Cost 

  But the number of training images N is usually much smaller than D, and this 
leads to a trick:  

   Let X be the N × D  centred data matrix whose nth row is given by xn - x( )t .

   
Then the sample covariance matrix is S =

1
N

XtX.

   
and the eigenvector equation is 1

N
XtXui = λiui

   
Pre-multiplying both sides by X yields 1

N
XXt Xui( ) = λi Xui( )

  Now letting  vi = Xui,  we have

   
1
N

XXtvi = λivi

 D × D

 N × N

Much smaller eigenvector problem! 
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Computational Cost 

  To find the eigenvectors of S, we premultiply by Xt: 

   

1
N

XXtvi = λivi →
1
N

XtX
⎛
⎝⎜

⎞
⎠⎟

Xtvi( ) = λi Xtvi( )
 N × N

 S

   
and, normalized to unit length, the eigenvectors are ui =

1
Nλ i

Xtvi

  

Note that these N  eigenvectors live in the N-dimensional subspace 
spanned by the training images.
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Pre-Whitening 
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Compression 

Original M = 1 M = 10 M = 50 M = 250
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Modeling 

 x +αu1

Low-dimensional model of variation of registered objects such as faces 

 x +αu1

 x +αu1  x +αu1
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Probabilistic PCA 

  PCA applies to data of any kind. 

  But PCA can also be interpreted as the maximum likelihood 
solution to a probabilistic latent variable model based on a 
constrained form of the Gaussian distribution: 

   

Let z be an M-dimensional hidden variable with Gaussian prior
Let x be the D-dimensional observed variable with Gaussian conditional:
p(z) = N(z | 0,I)
p(x | z) = N(x | Wz + µ,σ 2I)

 D ×M
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Probabilistic PCA 

  One way to see this is to think of Probabilistic PCA as the limit 
of a mixture of Gaussians model, as the number of Gaussian 
components  ∞: 



Subspace Models 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

23 

Marginalize 

over h 

Probabilistic PCA 

Pi
xe

l 2
 

Pixel 1 

Pi
xe

l 2
 

Pixel 1 

Consider putting the means of the Gaussians mixture components all on a 
line and forcing their diagonal covariances to be identical. 
What happens if we keep adding more and more Gaussians along this 
line? 
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Marginalize 

over h 

Probalistic PCA 

Pi
xe
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Pixel 1 

Pi
xe
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Pixel 1 

Consider putting the means of the Gaussians mixture components all on a 
line and forcing their diagonal covariances to be identical. 
What happens if we keep adding more and more Gaussians along this 
line?  In the limit the hidden variable become continuous 
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Marginalize 

over h 

Probabilistic PCA 

Pi
xe

l 2
 

Pixel 1 

Pi
xe

l 2
 

Pixel 1 

Now consider weighting the constituent Gaussians... 

Consider putting the means of the Gaussians mixture components all on a 
line and forcing their diagonal covariances to be identical. 
What happens if we keep adding more and more Gaussians along this 
line?  In the limit the hidden variable become continuous 
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Marginalize 

over h 

Probabilistic PCA 

Pi
xe
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Pixel 1 

Pi
xe
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Pixel 1 

Consider putting the means of the Gaussians mixture components all on a 
line and forcing their diagonal covariances to be identical. 
What happens if we keep adding more and more Gaussians along this 
line?  In the limit the hidden variable become continuous 
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Probabilistic PCA 

  PCA as the maximum likelihood solution to a probabilistic 
latent variable model based on a constrained form of the 
Gaussian distribution: 

   

Let z be an M-dimensional hidden variable with Gaussian prior
Let x be the D-dimensional observed variable with Gaussian conditional:
p(z) = N(z | 0,I)
p(x | z) = N(x | Wz + µ,σ 2I)

 D ×M



Subspace Models 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

28 

Generative Model 

z

p(z)

�z

x2

x1

µ

p(x|�z)

} �z|w|

w
x2

x1

µ

p(x)

xn

zn

N

µ

σ2

W

   

p(z) = N(z | 0,I)
p(x | z) = N(x | Wz + µ,σ 2I)

Prior over latent variable Marginal density Subspace 

 x = Wz + µ + ε
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Marginal Distribution for Probabilistic PCA 

  The marginal distribution of the observed variable is 

   

p(x) = N(x | µ,C)
where
C = WWt +σ 2I
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Maximum Likelihood PCA 

  ML parameters can be found either by 
 determining M eigenvectors and eigenvalues directly 
 EM 

 µ = x

   

WML = UM LM − σ 2I( )1/2
R

where
UM  is a D ×M  matrix whose columns are given by any subset of size M  of the eigenvectors of S
LM  is an M ×M  diagonal matrix containing the M  corresponding eigenvalues λi

R  is an arbitrary rotation matrix

  
σML

2 =
1

D −M
λi

i=M +1

D

∑

 x = Wz + µ + ε
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Generative Model 

z

p(z)
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p(x|�z)

} �z|w|

w
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xn
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σ2

W

   

p(z) = N(z | 0,I)
p(x | z) = N(x | Wz + µ,Ψ)

Prior over latent variable Marginal density Subspace 

 x = Wz + µ + εΨ

 Ψ = Covariance of ε :  diagonal but not isotropic
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Factor Analysis Terminology 

  Columns of W are called factor loadings 

  Diagonal elements of Ψare called uniquenesses 

xn

zn

N

µ

σ2

W

 x = Wz + µ + εΨ
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Marginal Distribution for Factor Analysis 

  The marginal distribution of the observed variable is 

   

p(x) = N(x | µ,C)
where
C = WWt +Ψ
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Maximum Likelihood Parameter Estimation 

 µML = x

   However, no closed-form solution for WML.  Instead, can use EM to find WML  and ΨML.
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Learning Results: Two Factor Model 

 x = Wz + µ + ε

µ   w1

    where W = w1 w 2 …wD⎡⎣ ⎤⎦

  w 2

  µ + 2w1   µ + 2w 2

Ψ
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Learning results: Two Factor Model 

 x = Wz + µ + ε

µ   w1

    where W = w1 w 2 …wD⎡⎣ ⎤⎦

  w 2

  µ + 2w1   µ + 2w 2

Ψ



Subspace Models 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

38 

Non-Linear Extensions 

  Mixture of factor analyzers (MOFA) 
  Two levels of the EM algorithm 
 One to learn each factor analyzer 
 One to learn the mixture model 
 Can describe quite complex manifold structures in high 

dimensions with only a limited number of parameters 

Pixel 1 

Pi
xe

l 2
 

   

p(x) = N(x | µk ,Ck )
k =1

K

∑
where
Ck = WkWk

t +Ψk
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Non-Linear Extensions 

  Kernel PCA 
  Idea:   

  Use a non-linear mappingφto an M-dimensional ‘feature space’ 
  Now perform PCA in this new space 

x1

x2

φ2

φ1
v1

φ
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Kernel PCA 

  
Covariance in feature space C =

1
N

φ xn( )φ xn( )t
n=1

N

∑

  Eigenvector expansion Cvi = λvi
  
→  1

N
φ xn( ) φ xn( )t vi{ }

n=1

N

∑ = λivi

  

Thus the eigenvector vi  is a linear combination of the transformed data vectors φ xn( ) :

vi = ainφ xn( )
n=1

N

∑

  
Substituting, we have 1

N
φ xn( )φ xn( )t aimφ xm( )

m=1

N

∑
n=1

N

∑ = λi ainφ xn( )
n=1

N

∑

  

Now multiplying both sides by  φ xl( )t ,  we obtain

1
N

φ xl( )t φ xn( ) aimφ xn( )t φ xm( )
m=1

N

∑
n=1

N

∑ = λi ainφ xl( )t φ xn( )
n=1

N

∑

  
Finally, defining the kernel function k xn,xm( ) = φ xn( )t φ xm( ), we can write

  

1
N

k xl ,xn( ) aimk xn,xm( )
m=1

N

∑
n=1

N

∑ = λi aink xl ,xn( )
n=1

N

∑

M-dimensional eigenvector    
Assume 0-mean data vectors: xn = 0

n=1

N

∑ .
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Kernel PCA 

  

1
N

k xl ,xn( ) aimk xn,xm( )
m=1

N

∑
n=1

N

∑ = λi aink xl ,xn( )
n=1

N

∑

   or, in matrix notation, K2ai = λiNKai →Kai = λiNai

   
Requiring that the eigenvectors v i  in feature space be unit vectors leads to the constraint ai

2
=

1
Nλi

.

    

In practice, for the projected data to have 0 mean, use K = K −1NK −K1N +1NK1N

where

1N =

1
N

…
1
N

  
1
N


1
N

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 N

 N

N-dimensional eigenvector 
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Kernel PCA 


